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After reporting numerical studies based solely on s-states of total (s + p + d etc.) bound- 
state densities, which allow the range of validity of the simplest density functional theory of 
Thomas and Fermi to be critically assessed, two areas in which analytical progress proves possi- 
ble are focused on. The first of these is the local density of states in the continuum, for which 
an exact formula is derived. The second concerns the Slater sum, for which an explicit differen- 
tial equation is established. Prior to this, only the Bloch equation satisfied by the off-diagonal 
generalization of  the Slater sum, namely the canonical density matrix, was available. 

1. Introduction 

In the important 1/Z expansion of the ground-state energy of an atomic ion of 
nuclear charge Ze and with N electrons, this energy E(Z, N) is expressed as 

( 1 ) 
E(Z,N) = Z 2 co(N) + :el(N) +-~e2(N) +. . .  (1.1) 

following Hylleraas [1], Layzer [2] and others [3]. In this expansion, e0(N) is com- 
pletely determined by solution of the bare Coulomb field problem, while the higher 
terms in the series account for effects of screening, plus exchange and correlation. 
While, for fixed N, the convergence of this series is guaranteed for sufficiently large 
Z, for other than the lightest atoms it is essential to sum the series (1.1). As was 
pointed out by March and White [4] in early work, one such partial sum is afforded 
by the Thomas-Fermi limit of density functional theory, which leads to the result 

ETF(Z,N) = Z7/3f(N/Z), (1.2) 

where the functionf(x) is known from numerical solution of the Thomas-Fermi 
self-consistent field problem [4]. For neutral atoms, ie N = Z, the term Z 7/3 from 
eq. (1.2) has to be corrected by a term of O(Z 2) from an inner-electron correction 
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neglected in the Thomas-Fermi (TF) approach [5-7], a Dirac-Slater exchange 
term [5] of O(Z 5/3) and a correlation energy of O(Z) (see ref. [8] and other authors 
cited there). Such a development gives an excellent overall account of numerical 
Hartree-Fock energies calculated for individual atoms. 

Such progress in calculating the ground-state energy has prompted recent paral- 
lel studies of the ground-state electron density. Two aspects are important in the 
present context. First of all, since the leading term in the energy expansion (1.1) is 
for electrons, taken as non-interacting, moving in a bare Coulomb potential 
-Ze2/r, the ground-state electron density p(r) in this potential is of obvious inter- 
est. For closed shells, considerable progress has proved possible. One step, for den- 
sities of s + p + d etc. states associated with closed shells, has been the derivation 
of an exact spatial generalization of Kato's theorem to read [9] 

Op(r)_ 2Zps(r), ao=li2/rne 2. (1.3) 
Or ao 

This has already proved valuable [10]; here we shall use it to construct the total 
(s + p + d etc.) density for 5 closed shells by computing solely the s-state density Ps 
and then determining p(r) by numerical quadrature using eq. (1.3). The result for 
p(r) is then utilized to make a critical assessment of the range of validity of the sim- 
plest density functional theory of Thomas and Fermi (TF). 

Following this numerical study of bound states, attention will then be focused 
on two specific areas where analytical progress proves possible. The first of these is 
the local density of states in the continuum. Here, analytical forms are estab- 
lished, both from the (approximate) TF density functional theory and then exactly 
via a Green function calculation, using the work of Blinder [11] and of earlier 
authors. This analytical progress is summarized in section 3. 

The second area in which analytical progress proves possible is in treating 
bound plus continuum states via the so-called Slater sum S(r,/3), defined explicitly 
in eq. (4.2) below. The essential result of this part of the present investigation is to 
establish the differential equation (4.13) for S(r,/3). Prior to the present work, one 
had to use the Bloch equation, which is obeyed by the off-diagonal generalization 
of the Slater sum, namely the canonical density matrix. Clearly it is a major simpli- 
fication to be able to work directly with the diagonal matrix, or Slater sum. Section 
5 constitutes a brief summary. 

2. Ground-s ta te  density for closed shells in a bare Cou lomb field 

To obtain the ground-state density p(r), the simplest route is to calculate the s- 
state density ps(r) in eq. (1.3) by summing the squares of the s-state hydrogenic 
wave functions, and then integrating eq. (1.3) to read 



S. P f  alzner et al. / Bound and continuum densities 11 

106 

105 ~ . ~  

10 a - 

10 2 

10 ~ 

I I 

0,05 0.10 

~ l ' l l  I l l  I l l  I 

I I I a I i I i I I I I 

0.15 0.20 0.25 0.30 0.35 O.t,O 0./~5 0.50 

r 

Fig. 1. The s-state density p~(r) calculated for doubly filled levels in a bare Cou lomb field. The result 
is for nuclear charge 110e and for 5 closed shells. Atomic  units are employed in all figures. 

p(r) = 2Z f i ° °ps( r )  dr. (2.1) 
ao Jr  

As an example, fig. 1 depicts the s-state density for 5 closed shells obtained by 
summing the squares of the wave functions ~,00(r) from n = 1 to 5. The plot in 
fig. 1 has been produced for the specific case Z = 110, which corresponds to a 
"neutral"  system in that 5 closed shells in the bare Coulomb field, with 2n 2 elec- 
trons per closed shell, contain 110 electrons. The "ripples" in the s-state density 
shown become pronounced when Ps (r) is multiplied by r 2, as illustrated in fig. 2. All 
plots in the paper are made in atomic units. 

Using the results for ps(r) shown in fig. 1, eq. (2.1) has been utilized to obtain 
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Fig. 3. Solid curve: the exact wave mechanical ground state density p(r) calculated directly from the 
s-state density of  fig. 1 by using eq. (2.1). The dashed curve is the result of Thomas-Fermi statistical 

theory as given in eqs. (2.2) and (2.3). Again  Z = 110 and N = Z.  

the total ground-state density p(r) for 5 closed shells by numerical quadrature. 
The result is shown by the solid curve of fig. 3. It is to be stressed that in obtaining 
this curve, one has avoided recourse to any wave functions having angular depen- 
dence, that is p, d, etc., wave functions. For closed shell systems, as exemplified by 
eqs. (1.3) and (2.1), the s-state density suffices to determine p(r). As in fig. 2 for 
this s-state density, fig. 4 shows D(r) = 4rrr2p(r), the radial electron density. In con- 
trast to fig. 2, where the "shells" are pronounced, in the total density D(r) the shells 
are beginning to be smoothed out, for this example with 110 electrons. Even- 
tually, of  course, if one filled a sufficiently large number of  closed shells, one must 
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Fig. 4. Radia l  density D(r) = 47rr2p(r), obtained from p(r) in fig. 3. 
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asymptotically approach the TF semiclassical density. This is given explicitly in 
the bare Coulomb field problem under discussion by 

2 ----- (2m)  3/a . (2 .2)  PTF(r)  = C 3 ~ -}- , C3 ~ 

The chemical potential # is, of course, to be determined by normalization of the 
total electron density. In the present case it is given in atomic units by [3] 

1 Z2N_2/3 (2.3) 
/d - -  181/3 

with N = f p(r)dr being the total number of electrons as above. For N = Z = 110, 
the result (2.2) is shown by the dotted curve in fig. 3. The corresponding approxi- 
mation to the radial density D(r) is similarly shown in fig. 4. Clearly, it can be seen 
that especially from fig. 4 the TF statistical theory is not fully quantitative for the 
ground-state electron density p(r) even for 110 electrons. Furthermore, of course, 
as follows from eq. (2.2) plus eq. (2.3), it has a classical cutoff radius, rc say, given 
by Ze2/rc--I~1, while there is a singularity in the density like r -3/2 as one 
approaches the point nucleus. 

Using the present method based on eq. (2.1), it will be a straightforward matter 
in the future to repeat the calculations shown in figs. 1-4 for a larger number of 
closed shells. The economy of the present approach is best illustrated by noting 
that, as already mentioned, there are 2n 2 electrons in a closed shell of principal 
quantum number n for the bare Coulomb field, of which only 2 are s electrons. 

We turn next to the treatment of continuum states. In the spirit of the TF theory 
in eq. (2.2), this is moving from the regime of negative chemical potential # to the 
case where # is greater than zero. Here we shall focus all attention on the local den- 
sity of states, to be defined precisely below. 

3. Local  density o f  states in continuum 

Let us start out from the TF relation (2.2) and define p(r, E) from it by replacing 
/z by the (now positive) energy E. Since we are in the continuum, let us then differ- 
entiate p(r, E) with respect to energy E. This defines the local density of states 
N(r, E), which is evidently given in the TF approximation by 

NTF(r,E) = PTF(r,E) = E + - -  7- (3.1) 

If we "switch off" the atomic potential -Ze2/r in eq. (3.1) by letting Z tend to 
zero, then we obtain the density of states N(E) of free electrons, the resulting sys- 
tem being described by plane waves and having therefore translational invariance. 

The object of the present section is purely analytical; to replace the approximate 
TF formula (3.1) for the bare Coulomb field by an exact result. 
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3.1. USE OF COULOMB GREEN FUNCTION 

The tool we shall employ  here is the Cou lomb  Green function,  the analytical 
fo rm of  which has been studied by m a n y  workers  [1 1]. To be precise, we define this 
Green funct ion by 

G(rl, ra, E) = S-" ¢*'t'~(rl)¢ntm(r2) (3.2) 
, 

nlm 

where en are the exact levels for the Cou lomb  field, with Im E > 0 for G +. 
Fol lowing Blinder [1 1 ], we employ the new independent  variables 

x = r l + r 2 + r l 2 ,  y=r1+r2 - r12 ,  x>~y>>.O, (3.3) 

where rl - !"2 = r12 and r12 = Ir121. Writ ing E = ka/2, Blinder then finds 

sin  ( c°t " G+(x,y,k) = ds ~) exp(ik~coshs)Jo(kTlsinhs ) (3.4) 

with ( = (1/2)(x  + y), 77 = (xy) 1/2 and v = Z/k. We note  f rom eq. (3.4) tha t  G + is 
a funct ion of  only two space variables x and y. This, in turn,  results f rom the fact 
tha t  for the bare Cou lomb  field the R u n g e - L e n z  vector is a cons tan t  of  m o t i o n  
[121. 

As Z tends to zero, ie u tends to zero, eq. (3.4) reduces to the free-particle Green  
funct ion,  G~- say, namely  

G+ = exp(iklrl - rz[ ) (3.5 
It ,  - r21 

I f  we take the imaginary  par t  of  G +, we evidently find 

Im G+(rl,  r2, E) - sink[r,  - r21 (3.6) 

I f  one now goes on to the diagonal  rl = r2 - r say, then eq. (3.6) yields 

Im  G~(rl, r2, E) = k = (2E) 1/2 , (3.7) 

which is essentially the free-electron density of  states discussed above. In fact, the 
above cor respondence  follows f rom the quite general result for the local densi ty o f  
states N(r, E), namely  [1 3] 

N(r, E )  Op(r, E )  
- -  OE - -  Im G+(r,r,E). (3.8) 

The  result (3.8), when  combined  with eq. (3.4) above, provides us with a route  to 
calculate the local density of  states in the bare C o u l o m b  field. 

3.2. LOCAL DENSITY OF STATES N(r, E) 

Obviously one wants  to take, f rom eq. (3.8), first the imaginary  par t  of  
G + (x, y, k) in eq. (3.4) and  secondly to go on to the diagonal  rl = r2 = r. F r o m  the 
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definitions of  x and y in eq. (3.3), this second step is equivalent to putt ing 
x = y = 2 r .  

To facilitate these two steps, we note with Blinder [11] that  the substitution 
sinh s = csch q transforms the integral in eq. (3.4) to give 

G+(x,y, k) = ~ dq csch2qexp(i[2vq + k(cothq])Jo(kr 1 csch q). (3.9) 

Taking the imaginary part  of eq. (3.9), one can then put x = y = 2r to find the 
result 

r q] 271"3 J0 dq csch2q cos + 2kr coth Jo(2kr csch q), 

(3.10) 
where k 2 = 2E. The integral can now be evaluated, with the result 

N(r, E) = ~ cos v7 - n - tan-1 
n = l  

x [M~v,1/2(ikr ) W[u,l/2(ikr)-(~q- -~r)MivA/2(ikr)Wiu'l/2(ikr)] " 

(3.11) 

The functions M and W appearing in eq. (3.11) are Whittaker functions. The quan- 
tity 7 denotes Euler's constant. It can be shown that the right-hand side of 
eq. (3.11) is real. The result (3.11) achieves the objective of transcending the semi- 
classical approximation (3.1) for this case of  the bare Coulomb field. 

Having discussed the quantum mechanics of  bound and cont inuum electron den- 
sities in the Coulomb field case, we shall finally consider the calculation of  the Sla- 
ter sum for this same field. This, of course, involves both bound and cont inuum 
states together (see eq. (4.2) below). 

4. Different ia l  equa t i on  for  Slater sum for  bare  C o u l o m b  field 

For  a one-electron Hamiltonian H, of  the form 

1 2 V(r), (4.1) H, = - ~ V ,  + 

the Slater sum S(r,/3) is defined by 

S(r,/3) --- E~b~(r)~bi(r) e x p ( - f l c i ) ,  f l  = ( k B Z )  - 1  . (4.2) 
all i 

In eq. (4.2), ~bi(r) and ei represent, respectively, the normalized eigenfunctions 
and eigenvalues of the hamiltonian (4.1). The Bloch equation 
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OC(r, r', 13) (4.3) 
H , C ( r , / ,  13) = 013 

affords a well-established route to the canonical density matrix C(r, r', 13). S(r,/3) 
is then the diagonal element C(r, r, 13). However March and Murray [14] showed, 
for central field problems in which V(r) = V(Irl), that a partial wave analysis could 
lead to S(r, 13) in the form 

S(r,13) = Z ( 2 1  + 1)St(r,/3) (4.4) 
l=0 

and that & (r, 13) itself satisfied the differential equation 

1 03  ( r 2 & )  l ( l + l )  0 lOg(r2& ) 
8 Or 3 2r Or (rSl) - ~ 0--7 

- v O ( r 2 S I )  02 ( r2S1)=0  (4.5) 
Or Or 013 " 

If one multiplies eq. (4.5) by (2 l+  1) and sums over all l to form S(r, 13) in 
eq. (4.4), the term involving l(l + 1) in eq. (4.5) presents a stumbling block, and for 
a general central field potential V(r) this summation has so far not been achieved. 
The resulting differential equation therefore relates S and its derivatives to this 
summation of & and its derivative 0N/Or. 

However, for the bare Coulomb field (cf. eq. (1.3) above), Storer [15] and later 
Pollock [16] have demonstrated that the canonical density matrix C(r, r', 13) enter- 
ing eq. (4.3) can be directly related to its s-wave component Ct=0(r, r', 13). This 
strongly suggests for this specific model that S(r,/3) should be determined solely by 
&=0(r, 13) = Ss(r, 13), the s-wave contribution in eq. (4.4). Storer introduces 
P/is(r) = re/is(r) and then shows that 

S(r,/3) = - - lim - -  P*,,(r + s)P/1,(r - s) exp(-13e/1) (4.6) 2 s-+O Os 2 

Expanding the RHS ofeq. (4.6) around s = 0, one readily finds 

lim ~ ~ ,  exp(-13e/1) IP.,I 2 + s ( P ' . % ,  - PLP'/1s)s=O 
s-+O US" "--" 

/1 

*It * I *1 3 +-~ (P2SP, s + PasZ" - 2e*~sU/1s)s=o+O(s ) 

_ , .  . , _ p . ,  . - Zexp(-13e/1)[P'~sP/1~+ P~U~s 2 /1~P'/1,]~=0 (4.7) 
/1 

From the definition of Ss we find that 

02 [r2Ss(r, 13)] Zexp( -13e /1 ) t "  /1s'/1s + P;sP'~s + ns- /1sj = rp*,'p * ' 2P *'/~ ] (4.8) Or 2 
/1 
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and 

0 
0/3 (PS i ( r ,~3) )  = ~ ~,le,~l 2 exp(-/3e,). (4.9) 

n 

Furthermore, the P~, are solutions of the radial Schr6dinger equation 

P: 's+ 2 ( Z +  e,)  PrL~ = 0. (4.10) 

Inserting eqs. (4.8)-(4.10) in eq. (4.7), the relation (4.6) finally takes the form 

1 02 ( r ~ S , ) _ 4 ~ ( r 2 S s  ) + 4 Z  (raS,) (4.11) 
S(r ,  /3) = -~--~r 2 r " 

Taking the r-derivative of eq. (4.11) and returning to eq. (4.5) for s-states, ie 
l = 0, one obtains 

OS 
0--~ = - 2 Z S s  . (4.12) 

We stress that eq. (4.12) is the analogue in statistical mechanics of the quan- 
tum-mechanical spatial generalization (1.3) of Kato's theorem [9] for the bare Cou- 
lomb field. One can now substitute for S~ in eq. (4.11) when the desired 
differential equation for the Slater sum S(r , /3 )  results, namely 

- 2 Z S  - T ~- 2 r S "  + 1 + 4r 2 S ' ,  (4.13) 

with the primes denoting the derivatives with respect to r. 
Equation (4.13) has been shown to hold for the bound part of S: 

Sb = ~ exp(--/3e,)l~,tm(r)l 2 (4.14) 
bound 
states 

in earlier work [17]. However the existence of a more general relation seemed to 
us likely from the infinite series form of S given by Blinder [18]. By means of 
eq. (4.12), S~ may be calculated from Blinder's result. 

5. Summary  

The spatial generalization (1.3) of Kato's theorem can be used to provide a 
direct route to the calculation of the total density from the s-state density (see 
figs. 1-4 above). The analogue of eq. (1.3) for the Slater sum has been obtained 
here, the result being exhibited in eq. (4.12). 

Specific to continuum states, again for the model of the bare Coulomb field, the 
local density of states N ( r ,  E )  can be obtained. This is given in the form of a one- 
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dimensional quadrature in eq. (3.10). This can be evaluated as an infinite series, 
as ineq.  (3.11). 

Finally, by utilizing the result (4.12) relating the Slater sum S to its s-wave 
component  Ss, a third order partial differential equation has been obtained for the 
Slater sum in a bare Coulomb field. An exact solution of this, again though in the 
form of  an infinite series, is then known from the earlier work of Blinder [18]. 
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